
Large-Scale Software Development
Lecture 3 : Build tool(s) and CI/CD

Agenda

• Questions
• Seminar
• Build tools in general
– Maven in particular

• CI/CD in general
– Gitlab-ci in particular

2

Scenarios - actions
1. Many groups of developers, multiple changes — Package management

system
2. Building artefacts based on multiple files with dependencies — build scripts
3. Conducting multiple actions with inter-dependencies on multiple files … —

Flexible build system

3

Package management systems

4

Dependency management

5

Dependency management issues
• Is a request to modify the current software component graph

satisfiable?
– Are additions compatible with other components?
– Are deletions safe with respect to other dependencies?

• Given a component, determine versions of other components we
can safely rely on

6

Dependency management issues
• Y depends on X >= 1.8. X makes binary incompatible changes from

v. 1.9 to v. 2.0...
• Can components be installed from local sources as well as from

remote?
• Should OS-specific dependency management or language-specific

be used?

8

Software package management systems

9

Name Environment Format
NuGet .Net CLR XML

Gradle JVM XML

dpkg/APT Linux Ar archive

Rubygems Ruby Ruby

MSI Windows In-file DB

BSD Ports OS X/Linux/BSD Makefile

...

Maven

Maven - Convention Over Configuration

Lifecycle , Phases and plugins
mvn clean compiler:compile package

• Three built-in Lifecycles
• default, clean and site

• Phases in a lifecycle
• validate, compile, test, package, verify,

install, deploy
• pre-*, post-*, or process-*

• are not called from the cli (often used in
testing)

• Phase are made of Plugin goals
• compile complier:compile

Maven- Plugins

Maven

14

mvn -h

Life cycles

Clean

Default

Site

validate
compile
test
package
verify
install
deploy

Maven — structure

16

mvn archetype:generate -DgroupId=com.mycompany.app -DartifactId=my-app -DarchetypeArtifactId=maven

Maven — Configuration

17

 <parent>
 <groupId>org.graphwalker.example</groupId>
 <artifactId>graphwalker-example</artifactId>
 <version>3.4.2</version>
 </parent>

 <artifactId>java-petclinic</artifactId>

<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.1</version>
 <configuration>
 <source>1.7</source>
 <target>1.7</target>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.graphwalker</groupId>
 <artifactId>graphwalker-maven-plugin</artifactId>
 <version>${project.version}</version>
 <!-- Bind goals to the default lifecycle -->
 <executions>
 <execution>
 <id>generate-sources</id>
 <phase>generate-sources</phase>
 <goals>
 <goal>generate-sources</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>

Demo

Scenarios - actions
1. Single developer, multiple changes — Version control system
2. Many developers, multiple changes — Distributed version control system
3. Many groups of developers, multiple changes — Package management

system
4. Building artefacts based on multiple files with dependencies — build scripts
5. Conducting multiple actions with inter-dependencies on multiple files … —

Flexible build system
6. Automatically sensing changes and conducting such actions based on

changes — Continuous integration tools

20

CI - Continuous Integration

21

“Continuous Integration is a software development practice where members of a team

integrate their work frequently, usually each person integrates at least daily - leading to

multiple integrations per day. Each integration is verified by an automated build

(including test) to detect integration errors as quickly as possible. “
Martin Fowler

Geek & Poke List of
Best Practices

22

https://www.zuehlke.com/blog/app/uploads/2015/11/geek-and-poke.png

CI Gives you the comforting feeling to know that
everything is normal

Why?
Detect development problems earlier
Reduce risks of cost, schedule and budget
Find and remove bugs earlier
Deliver new features and get user feedback more rapidly

23

How?
Maintain a single source repository
Automate the build
Make your build self-testing
Keep the build fast
Keep the build on the CI machine
Test in a clone of production environment
Make it easy for everyone to get the latest executable
Make the process transparent for everyone

24

25

Jenkins

26

Jenkins 27

Workflow automation tool

Jenkins 28

Workflow automation tool - pipelines

node { // <1>
 stage('Build') { // <2>
 sh 'make' // <3>
 }

 stage('Test') {
 sh 'make check'
 junit 'reports/**/*.xml' // <4>
 }

 stage('Deploy') {
 sh 'make publish'
 }
}

Groovy (JVM-based language)

Travis CI 29

GITLAB CI

30

Code and build scripts in the same repo

Easy to start

Scalable

Isolated test environment

Gitlab CI: Pipelines and Stages

31

A pipeline is a group of jobs that get executed in stages(batches). All of the jobs

in a stage are executed in parallel, and if they all succeed, the pipeline moves on

to the next stage. If one of the jobs fails, the next stage is not executed.

Pipelines are defined in .gitlab-ci.yml by specifying jobs in stages:

Demo

